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Abstract

In a large Czochralski-grown Si1ÿxGex

(0:02 � x � 0:07) gradient crystal, diffraction patterns
have been measured in symmetrical Laue geometry
using synchrotron radiation in the energy range 100±
200 keV. The experimental data are in very good
agreement with the results from geometrical optics
theory for distorted crystals, if the creation of new
wave®elds for strain gradients larger than a critical value
is taken into account. In this sense, the crystal behaves
like an ideal gradient crystal. If the normal absorption is
disregarded, for re¯ection 111 and 100 keV energy, the
full width at half-maximum values and the peak
re¯ectivities of the diffraction patterns range from
14.600 and 97%, respectively, to 70.900 and 74%,
respectively, for a variation in the Ge concentration
from 3.5 to 5.3 at.%.

1. Introduction

Recently, large Si1ÿxGex gradient crystals have been
grown (Abrosimov et al., 1996), which offer new possi-
bilities for optical elements in synchrotron-radiation
instrumentation (Erko et al., 1996). For high-energy
synchrotron radiation, these crystals show diffraction
patterns in transmission geometry that are about 50
times broader than those obtained for perfect crystals
and with peak re¯ectivities of almost 100%, disregarding
normal absorption (Keitel et al., 1998). They are there-
fore very well suited for use as monochromators and
analysers on triple-crystal diffractometers at photon
energies above 80 keV. In order to understand the
diffraction mechanism in these crystals, diffraction
patterns have been measured in transmission geometry
for re¯ections 111 and 333, using synchrotron radiation
with energies between 100 and 200 keV. The crystal was
7 mm thick and the Ge concentration varied between
4 and 6% over a sample length of 40 mm. This con-
centration gradient causes a signi®cant curvature of
the lattice planes, like in a crystal subject to a
thermal gradient. The measured rocking curves have
been analysed using the geometrical dynamical

diffraction theory for weakly distorted crystals and
taking into account the creation of new wave®elds in
highly distorted crystals. Although the crystals are of
very high quality, effectively they may behave like
strongly distorted crystals because of the large
extinction length and the narrow Darwin width for
high-energy X-rays.

The paper is organized as follows. After a short
description of the gradient crystal (x2) and the experi-
mental setup for measuring the rocking curves (x3), the
experimental results are presented (x4). Next (x5), the
dynamical theory for distorted crystals is discussed for
the special conditions of X-rays of energies above
80 keV and the theoretical results are compared with the
experimental data (x5.2).

2. Si1ÿxGex gradient crystal

The crystal plate, of dimensions 52� 33� 7 mm, was cut
out of an Si1ÿxGex (0:02 � x � 0:07) ingot of about
35 mm in diameter and 125 mm in length, which was
grown along the [111] direction by the Czochralski
technique (Abrosimov et al., 1996). The sample
geometry is indicated in Fig. 1. Absolute lattice par-
ameters were determined by Keitel et al. (1998) at
different positions of the Si1ÿxGex crystal with an
accuracy of 10ÿ4 with respect to the well known Si lattice
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Fig. 1. Geometry of the Si1ÿxGex gradient crystal. The Ge concentra-
tion gradient is parallel to [111].
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parameter. These measurements were performed at the
triple-crystal diffractometer at the HASYLAB high-
®eld wiggler beamline BW5 using 120 keV synchrotron
radiation. The Ge concentrations were determined from
the measured lattice parameters using the calibration
curve of Dismukes et al. (1964); the results are shown in
Fig. 2.

On the other hand, starting from crystal-growth
parameters, the variation of the Ge concentration in the
crystal can be approximated by the Scheil±Pfann
expression (Pfann, 1978),

C�Ge � C
�0�
Ge�1ÿ g�kÿ1 with Ccr

Ge � kC�Ge:

k represents the segregation coef®cient, which for Ge in
Si is less than 1. g � Mcr=M�0� describes the solidi®ed
fraction, where Mcr represents the mass of the crystal
and M(0) the mass of the melt in the crucible. C�Ge is the
varying Ge concentration in the melt, C

�0�
Ge the initial

concentration in the melt, and Ccr
Ge the Ge concentration

in the crystal. In the range 0 < g < 0:6, the Ge
concentration in the crystal increases with a rather
constant gradient because k ' 0:35. In the range

g > 0:6, the Ge concentration increases with increasing
g ratio. A ®t of the Scheil±Pfann expression to the values
of Ge concentration for the sample presently under
consideration is also shown in Fig. 2. For another sample
grown by this technique, the applicability of the Scheil±
Pfann relation has been checked by an independent
determination of the Ge concentration using infrared
radiation (Abrosimov & Rossolenko, 1996). From the
®tted Scheil±Pfann relation, the functional dependence
of the reciprocal-lattice vector has been calculated,
again using the calibration curve of Dismukes et al.
(1964). The result is represented by the dotted curve in
Fig. 2.

3. Experimental set-up

In order to measure the diffraction pro®les for re¯ec-
tions 111 and 333, the diffractometer at the HASYLAB
high-®eld wiggler beamline BW5 (Bouchard et al., 1998)
was operated in dispersion-free two-crystal mode using
100, 120, 160 and 200 keV synchrotron radiation. The
monochromator was a perfect Si crystal also diffracting
in transmission geometry. The cross section of the inci-
dent beam was 0.5 � 0.5 mm. As indicated in Fig. 3, the
diffracted and the transmitted intensities, Ir���� and
It����, have been measured as a function of rocking
angle ��. In order to eliminate the effect of absorption
in the discussion of the diffraction properties of the
sample, the re¯ectivity r���� is obtained by normalizing
Ir���� with I

�0�
t � I0 exp�ÿ�t= cos��B��, where � is the

absorption coef®cient, t the sample thickness and �B the
Bragg angle. The measured peak re¯ectivity is then
de®ned by rmax

m � Imax
r =I

�0�
t . For 100 keV photons, the

measured attenuation coef®cient exp�ÿ�t= cos��B�� was
0.71, which re¯ects the high penetration power of high-
energy synchrotron radiation in matter.

Fig. 2. Reciprocal-lattice vectors measured on an absolute scale for
re¯ection 111 of the Si1ÿxGex crystal in 15 different positions (see
inset). The corresponding Ge concentrations shown as open
symbols were determined by means of the calibration curve of
Dismukes et al. (1964). The solid line represents a ®t of the Scheil±
Pfann relation to these Ge concentration data, from which the
variation of the reciprocal-lattice vector was calculated (dotted
line).

Fig. 3. The quantities measured in transmission geometry in a
dispersion-free double-crystal setting using synchrotron radiation
with energies between 100 and 200 keV. The monochromator is a
perfect silicon crystal and the sample is the Si1ÿxGex gradient
crystal. I0 represents the incident intensity, It���� the transmitted
intensity and Ir���� the re¯ected intensity. �� is the rocking angle.
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4. Experimental results

Fig. 4 shows the diffracted and transmitted intensities as
a function of rocking angle �� measured for re¯ection
111 in the volume element at position l � 30 mm in the
centre of the crystal using 100, 120, 160 and 200 keV
synchrotron radiation. The peak re¯ectivities approach
values close to 1 and they decrease with increasing
photon energy. By contrast, 
, the full width at half-
maximum (FWHM) of the diffraction pattern, is inde-
pendent of energy. For comparison, the FWHM values
of the diffraction patterns measured with two perfect Si
crystals in dispersion-free setting amount to 1.079, 0.898,
0.674 and 0.54000 for the four different photon energies,
respectively. The shape of each diffraction pattern of the
Si1ÿxGex gradient crystal is almost rectangular and, on
comparison with theory, each is found to be suf®ciently
well characterized by its FWHM, 
, and the value of the
average peak re¯ectivity rmax

m . These observations are
even more pronounced in the diffraction patterns
measured for the same volume element for re¯ection
333, as shown in Fig. 5. Similar measurements have been
performed in three additional volume elements of the
crystal with increasing amounts of Ge. The results of all
measurements made for re¯ection 111 in the central part
of the crystal plate are summarized in Fig. 6. In the
following, the increase of the FWHM of the diffraction
patterns with increasing Ge content and the fact that it is
independent of the photon energy will be explained by
means of dynamical theory for distorted crystals.

Together with the high re¯ectivity, the rectangular
shape of the diffraction pattern and the variation of its
FWHM by simply translating the crystal in the beam is
of great advantage when using Si1ÿxGex gradient crys-
tals as the monochromator or analyser on triple-crystal
diffractometers for high-energy synchrotron radiation
(Retsch et al., 1998).

5. Interpretation of experimental data

Penning & Polder (1961) and Kato (1963, 1964a,b) have
developed independently a geometrical optics theory of
the propagation of X-rays in distorted crystals. Their
theories lead to the same results and will be called PPK
theory or geometrical theory hereinafter. They show
that wave®elds, which in perfect crystals propagate
along straight beam paths, follow curved paths in
distorted crystals, analogous to the propagation of light
in a medium with a gradient in the index of refraction.

The basic parameter introduced in PPK theory to
describe the distortion of the re¯ecting planes is the
strain gradient �, de®ned as

� � ��L= cos2��B���@2�h � u�=@s0@sh�; �1�
where u is the displacement vector of the atom from its
ideal position, h the reciprocal-lattice vector, s0 and sh

the coordinates along the directions of the incident and
the re¯ected beam, respectively, �B the Bragg angle and
�L the inverse of the diameter of the dispersion surface,
which is equal to the extinction length in the symme-
trical Laue case:

�L � �V cos��B�=re�jCj�FhF �h�1=2: �2�
V is the volume of the crystal unit cell, Fh and F �h are the
structure factors for re¯ections h and �h, C represents the
polarization factor, � the wavelength of the X-rays and
re the classical electron radius. It is important to point
out that the parameter �, which describes the effective
distortion of the crystal, is proportional to the extinction
length �L, i.e. inversely proportional to the wavelength
and the structure factor. Therefore, the higher the
photon energy is and the smaller the structure factor is,
the higher the effective distortion is. As a consequence, a
crystal of relatively high degree of perfection may
behave like a highly distorted crystal for the diffraction
of short-wavelength photons.

Fig. 5. Diffracted and transmitted intensities as a function of rocking
angle measured for re¯ection 333; same conditions as Fig. 4.

Fig. 4. Diffracted and transmitted intensities as a function of rocking
angle measured for re¯ection 111 in position l � 30 mm in the
centre of the crystal using 100, 120, 160 and 200 keV synchrotron
radiation. The transmitted intensity I

�0�
t was normalized to 1.
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The geometrical theory no longer applies when the
strain gradient is too high. Authier & Balibar (1970) had
®rst shown that it is valid as far as the variation of the
departure from the Bragg angle along a distance equal
to the extinction length is much less than the width of
the diffraction pattern of a perfect crystal, the so-called
Darwin width; otherwise a new wave®eld is created.
Numerical simulations based on Takagi±Taupin equa-
tions, which are valid for high values of the strain
gradient �, have shown that the new wave®eld is created
for j�j > �=2�L in the region of the crystal where the
Poynting vector is parallel to the re¯ecting planes
(Balibar et al., 1975). For some special cases, the authors
give numerical values of the intensity related to the new
wave®eld. Later it was demonstrated analytically by
Balibar et al. (1983), for Laue geometry, and by
Chukhovskii & Malgrange (1989), for Bragg geometry,
that, in the case of a constant strain gradient �, the
fraction of the intensity that is transferred to the new
wave®eld is equal to

exp�ÿ2��c=j�j� with �c � �=2�L: �3�
It is interesting to note that

�c=j�j / 1=�2
L / �2FhF �h;

i.e. in a crystal of given strain the probability that
intensity is transferred to these new wave®elds increases
strongly for shorter wavelength radiation. In the case of
a variable strain gradient �, Gronkowski & Malgrange
(1984) have shown by means of numerical simulations
that the creation of the new wave®eld occurs where the
bent beam path is parallel to the lattice plane, and that
the fraction of the intensity that is transferred to this
new wave®eld is still given by exp�ÿ2��c=j�j�, with �
being taken at the point where the new wave®eld is
created. In summary, it is possible to describe X-ray

propagation in slightly and highly distorted crystals by
means of the geometrical theory with the additional
condition of taking the creation of new wave®elds into
account. In the following, these general theoretical
results will be adapted to the special case of the
diffraction of X-rays with energies between 100 and
200 keV from an Si1ÿxGex gradient crystal in symme-
trical Laue geometry.

5.1. Qualitative picture

Before considering PPK theory, some results of the
dynamical theory for the diffraction of X-rays from
perfect crystals in symmetrical Laue geometry are
recalled. As indicated in Fig. 7, an incident plane wave
with wave vector MO, which deviates from the Bragg
angle by ��, excites two wave®elds in the crystal with tie
points P1 and P2 on the two branches of the dispersion
surface. Inside the crystal, the wave®elds propagate
along straight beam paths parallel to their Poynting
vectors S1 and S2, which are normal to the dispersion
surface at P1 and P2, respectively, and symmetric with
respect to the lattice planes. The Poynting vector Si

(i � 1; 2) may be expressed by

Fig. 7. Schematic view of the dispersion surface and the boundary
conditions for symmetric Laue geometry. O is the origin of the
reciprocal lattice and H the reciprocal-lattice vector. s0 and sh

represent the unit vectors in the directions of the incident and the
diffracted beam, respectively. MO represents the wave vector of the
incident wave, La the Laue and Lo the Lorentz point. k��
corresponds to the deviation of the incident beam from the exact
Bragg condition, k being the wave vector in vacuum. S1 and S2 are
the Poynting vectors at tie points P1 and P2 on the dispersion
surface.

Fig. 6. Diffracted and transmitted intensities as a function of rocking
angle measured for re¯ection 111 in position l = 0, 10, 20 and 30 mm
in the centre of the crystal using 100, 120, 160 and 200 keV
synchrotron radiation. The transmitted intensity I

�0�
t was normalized

to 1.
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Si / �jD0ij2s0 � jDhij2sh�; �4�

where D0i and Dhi represent the amplitudes of the waves
forming wave®eld i, and s0 and sh are the unit vectors
along the incident and re¯ected beam directions,
respectively.

The splitting of the intensity between wave®eld 1 and
wave®eld 2 at the entrance surface results from applying
boundary conditions to the electric ®eld vectors. One
®nds that the intensity is higher in the wave®eld with a
Poynting vector closer to s0; the ratio of the two wave-
®eld intensities increases with increasing angle between
the Poynting vector and the re¯ecting net planes. At the
exit surface of the crystal, a given wave®eld splits into a
re¯ected and a transmitted wave. Their intensities are
again given through boundary conditions and one ®nds
that the higher the re¯ected (transmitted) beam inten-
sity is, the closer the direction of the Poynting vector is
to sh (s0).

When the crystal is rotated, the point M moves along
the line T0 crossing the Laue point La, which corre-
sponds to the exact Bragg condition, and the tie points
P1 and P2 move along the dispersion surface through its
centre. For an incident wave far from the Bragg condi-
tion, the Poynting vectors S1 and S2 are almost parallel
to s0 and sh on one side of the Bragg peak, and to sh and
s0 on the other side. In both cases, all the intensity is
transferred to the wave®eld parallel to s0. Because in
this limiting case the Poynting vector at the exit surface
is parallel to s0, one obtains only a transmitted wave.
This is expected intuitively since, far from Bragg inci-
dence, the X-ray beam passes straight through the
crystal and is only affected by normal absorption.

For the weakly distorted crystal, PPK theory
demonstrates that the curvature of the beam paths
during wave®eld propagation is due to a movement of
the tie points along the dispersion surface, i.e. in Fig. 8
from points P1 and P2 at the crystal entrance surface to
points P01 and P02 at its exit surface. For a constant strain
gradient �, as realized in the case of lattice planes bent
with a constant radius of curvature, the projection of
P1P01 and P2P02 on a line parallel to the reciprocal-lattice
vector h is proportional to �t, where t represents the
thickness of the crystal. The tie points P1 and P2 are
determined by the direction of the incident beam,
whereas the tie points P01 and P02 are determined by the
strain gradient �, i.e. the radius of curvature of the
lattice planes for the example considered here. There-
fore, as indicated in Fig. 8, the beam trajectories related
to the two wave®elds will in general not meet at the
crystal exit surface.

For larger values of the effective distortion, but still
j�j < �c, which in the case of high photon energies
occurs in rather perfect crystals, the curvature of the
trajectory is much stronger because, as indicated in
Fig. 9, the diameter of the dispersion surface is smaller,
i.e. the angular range in which the dispersion surface

deviates signi®cantly from the asymptotes perpendicular
to s0 and sh is much smaller. The tilt of the beam path
shown in Fig. 8 now occurs in a very localized area of the
crystal and the turning of the beam trajectory is more
kink like. Boundary conditions can be applied at the
entrance and exit surfaces in the same manner as in the
case of a perfect crystal. At the entrance surface, one
wave®eld starts propagation parallel to s0, the other
parallel to sh, and all the intensity is transferred to the
®rst wave®eld. During propagation of this wave®eld, the
tie point moves on the dispersion surface and at the exit
surface the wave®eld propagates in a direction parallel
to sh, i.e. all its intensity is transferred to the re¯ected
beam. Since most of the trajectory inside the crystal is
parallel either to s0 or to sh, the Borrmann effect does

Fig. 8. Schematic representation of the dispersion surface and the
energy ¯ow in a weakly distorted crystal diffracting in symmetrical
Laue geometry. The direction of the energy ¯ow of the two
wave®elds at the entrance and the exit surface is given by the
direction of the Poynting vectors at tie points P1 and P01 for
wave®eld 1 and P2 and P02 for wave®eld 2. The width of the
diffraction pattern 
 � �t��=2� is determined by the Darwin width
�, the strain gradient � and the thickness t of the gradient crystal; in
the present case, to a good approximation it is equal to the angle
between the lattice-plane orientation at the entrance and that at the
exit surface of the crystal. ABC de®nes the Borrmann triangle.
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not occur and the wave®eld is affected by normal
absorption only. Finally, if one neglects absorption
completely, all the incident intensity is transferred to the
re¯ected beam.

As mentioned before for strongly distorted crystals
with j�j > �c, the creation of new ®elds at the kink-like
turning region of the beam trajectory has to be taken
into account, which leads to a reduction of the diffracted
intensity.

5.2. Comparison with experimental data

As is usual in dynamical theory, the positions of the
tie points Pi on the dispersion surfaces are described by
means of the dimensionless parameter �. For P1, the tie
point at the entrance surface, one obtains

�i � 2��=�; �5�

where � represents the Darwin width,

� � 2dhkl=�L; �6�
with dhkl representing the lattice-plane spacing for
re¯ection hkl. �� describes the inclination of the lattice-
plane orientation from the exact Bragg condition. In
general, � values are transformed into angles in wave-
vector space by multiplication by �=2; examples are
given in Figs. 8 and 9.

PPK theory shows that the local value �(z) at a depth
z in the crystal is equal to

��z� � �i � �z:

The � parameter at the exit surface is thus given by

�e � �i � �t: �7�
The kink in the beam trajectory (see Fig. 9) occurs at
depth z where � � 0. Then, for all �i values with
ÿ�t < �i < 0, the beam trajectory shows such a kink
and, as explained above, the incident intensity is fully
transferred to the re¯ected beam, neglecting absorption.
For the limiting values �i � ÿ�t and �i � 0, the trajec-
tories either start or leave the crystal parallel to the
re¯ecting planes and, owing to the usual boundary
conditions in dynamical theory, the re¯ected intensity is
half the maximum value. For �i � 0, half the intensity is
transferred to the wave®eld that ends parallel to sh. For
�i � ÿ�t, all the intensity is transferred to one wave-
®eld, but at the exit surface only half the intensity is
transferred to the re¯ected beam. As indicated in Fig. 9,
the FWHM of the diffraction pattern expressed in
dimensionless � units is then equal to j�jt, and trans-
formed into angular units using equation (5):


 � j�jt��=2�: �8�
In the present case, because of the smallness of the
Bragg angle �B, @2=@s0@sh � cos2��B�@2=@z2 is a very
good approximation, where z represents a coordinate
normal to the crystal surface. Using equations (1) and
(6), one obtains


 � �@2�h � u�=@z2�dhklt;

which is independent of wavelength and structure factor,
as well as of the order of the re¯ection, because |h| is
proportional to 1=dhkl. 
, the FWHM of the diffraction
pattern of the distorted crystal, only depends on the
strain in the sample. The experimental results,
summarized in Table 1, con®rm this statement. Within
�3%, the 
 values are, indeed, independent of energy
and order of re¯ection. With the 
 value measured in
the four different volume elements of the sample
containing a known amount x of Ge atoms (see Fig. 2),
the strain parameter � can be calculated from equations
(8), (2) and (6). The calculation of the structure factor Fh

was based on an average form factor

h f i � xfGe � �1ÿ x�fSi:

The form-factor values fGe and fSi for germanium and
silicon were taken from PendelloÈsung measurements by

Fig. 9. Schematic representation of the dispersion surface and the
energy ¯ow in the same weakly distorted crystal as presented in Fig.
8, but for much shorter wavelength. Because of the smaller diameter
of the dispersion surface, the tilt in the trajectory of the energy ¯ow
is localized in the crystal and is more kink like. All intensity is
shifted into the diffracted beam direction.
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Deutsch et al. (1990) and Teworte & Bonse (1984),
respectively.

In order to explain the observed energy dependence
of the re¯ectivity, one has to take into account the
creation of the new wave®elds discussed above, which
reduce the intensity of the re¯ected beam. The beam
paths of the primary and of this new wave®eld are
symmetric with respect to the re¯ecting lattice planes
(Fig. 9). The intensity related to the new wave®elds is
thus transferred into the transmitted-beam direction
parallel to s0. Because the shape of each measured
diffraction patterns is almost rectangular, it is suf®cient
to calculate an average peak intensity. As stated above,
the fraction of the intensity that is transferred to the new
wave®eld is proportional to exp�ÿ2��c=j�j�, so that the
intensity Imax of the plateau is calculated according to

Imax
calc � I0 exp�ÿ�t= cos��B���1ÿ exp�ÿ2��c=j�j��; �9�

where I0 is the incident beam intensity. If I
�0�
t is the

transmitted intensity outside the angular range of the
diffraction pattern, then

rmax
calc � Imax=I

�0�
t � �1ÿ exp�ÿ2��c=j�j��: �10�

As demonstrated in Table 1, very good agreement is
found between the experimental and the calculated

peak re¯ectivities for all Ge concentrations, photon
energies and orders of re¯ection considered.

It is interesting to calculate the integrated re¯ecting
power for the limit of � towards in®nity, which corre-
sponds to the assumption made in the kinematical
diffraction theory. By expanding the exponential func-
tion in equation (10), one obtains

rmax
calc � 2��c=j�j:

In the present case, the integrated re¯ecting power R is
well approximated by the product of the FWHM of the
diffraction pattern, 
, and the peak re¯ectivity, rmax

calc .
Together with equations (3), (6) and (8), one obtains

R � rmax
calc 


� ��c�t

� ���=2�L��2dhkl=�L�t
� ��=�L�2dhklt

� �r2
e=V2�jCj2FhF �h��3= sin�2�B���t= cos��B��

� Rkin;

which is identical to the expression for Rkin calculated
from kinematical theory for transmission geometry.

Table 1. Full width at half-maximum values and experimental and calculated peak re¯ectivities for the Si1ÿxGex crystal

The FWHM of each diffraction pattern, 
 (0 0), the values rmax
m measured for re¯ections 111 and 333 at four different positions along the Ge

gradient in the centre of the Si1ÿxGex crystal, using 100, 120, 160 and 200 keV synchrotron radiation, and the corresponding calculated average
peak re¯ectivities, rmax

calc , are listed, along with the average FWHM of the diffraction patterns, h
i, measured in a given volume element of the
crystal for the two re¯ections with the four different photon energies.

0 mm 10 mm 20 mm 30 mm

Re¯ection 111
200 keV 
 70.5 33.8 21.2 14.2

rmax
m 0.30 0.50 0.65 0.77

rmax
calc 0.28 0.48 0.64 0.78

160 keV 
 70.4 32.9 21.4 14.5
rmax

m 0.42 0.62 0.80 0.88
rmax

calc 0.40 0.64 0.80 0.90
120 keV 
 70.2 32.7 22.4 15.2

rmax
m 0.61 0.81 0.93 0.97

rmax
calc 0.59 0.835 0.94 0.98

100 keV 
 70.3 33.9 22.8 14.6
rmax

m 0.74 0.90 0.96 0.97
rmax

calc 0.73 0.93 0.98 0.997

Re¯ection 333
200 keV 
 70.9 34.5 19.6 14.4

rmax
m 0.05 0.08 0.12 0.16

rmax
calc 0.03 0.06 0.10 0.14

160 keV 
 70.7 34.7 20.8 13.9
rmax

m 0.06 0.11 0.17 0.22
rmax

calc 0.05 0.10 0.15 0.21
120 keV 
 71.0 35.2 21.5 14.8

rmax
m 0.11 0.17 0.26 0.31

rmax
calc 0.09 0.17 0.25 0.34

100 keV 
 72.8 35.6 21.7 15.2
rmax

m 0.13 0.24 0.32 0.40
rmax

calc 0.12 0.23 0.34 0.45

h
i 70.86 (83) 34.16 (103) 21.43 (98) 14.60 (46)
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Fig. 10 shows a quite systematic dependence of the
re¯ectivities for the different photon energies and
germanium concentrations on the re¯ections 111 and
333. The fact that saturation for photon energies of
100 keV is reached for re¯ection 111 should be
emphasized. In the crystal volume element at position
l � 0 mm, containing �5.3 at.% Ge and showing the
broadest diffraction pattern (
 � 70:900), a big change in
the re¯ectivity from rmax

calc � 0:03 (200 keV, re¯ection
333) to rmax

calc � 0:73 (100 keV, re¯ection 111) is observed
for a change in extinction length from 802.1 to 219.7 mm.
For the volume element at position l � 30 mm with
the narrowest diffraction pattern (
 � 14:600) and
containing �3.5 at.% Ge, a variation in extinction
length from 826.8 to 226.4 mm leads to an increase of
re¯ectivity from rmax

calc � 0:14 (200 keV, re¯ection 333) to
rmax

calc � 0:997 (100 keV, re¯ection 111). Rather moderate
changes in the extinction length obviously lead to
strong variations in the crystal re¯ectivity.

In the discussion above, the strain parameter � is
assumed to be constant along the beam path, i.e. along
the direction normal to the crystal surface. Because of
the smallness of the Bragg angle, this `ef®cient strain
parameter' is only due to the curvature of the lattice
planes, and thus is inversely proportional to the radius of
curvature. The value of the radius of curvature deduced
from the different experimental � values varies between
20 m at sample position l � 0 mm and 100 m at
l � 30 mm. These values are in very good agreement
with those calculated from the lattice-parameter
gradient. In another experiment, using the same scat-
tering geometry and photon energy, the Borrmann fan

was scanned with a 10 mm wide slit and the variation of
the wavelength of the diffracted radiation was deter-
mined by means of dispersive analyser scans. From these
data, the radius of curvature of the diffraction planes
could be calculated. The resulting value is again in very
good agreement with that calculated from the width of
the corresponding diffraction pattern.

6. Conclusions

The diffraction of photons with energies between 100
and 200 keV in an Si1ÿxGex crystal investigated in
symmetrical Laue geometry is well described by means
of the geometrical optics (PPK) theory. If the modulus
of the strain gradient � is larger than a critical value �c,
the creation of new wave®elds has to be taken into
account, which reduces the re¯ected intensity. It is
important to realize that the ratio �c=j�j is proportional
to �2FhF �h, i.e. a given strain ®eld which is weak for 1 AÊ

radiation will act like a strong strain ®eld for diffraction
of 0.1 AÊ radiation. As expected from theory, the FWHM
of the diffraction pattern measured in a given volume
element of the sample, i.e. for a certain concentration of
Ge atoms, does not depend on wavelength or structure
factor and can therefore be used to determine the strain
gradient �. With this input parameter, the measured
re¯ectivity could be very well reproduced by theory over
a wide range of re¯ectivities. In this sense, the studied
Si1ÿxGex crystal behaves like a perfect gradient crystal.
For lower photon energies, a full calculation of the
diffraction pattern should be performed and more
detailed information on the strain gradient will be
needed.

Thanks are due to N. V. Abrosimov and H. Riemann
from the Institut fuÈ r KristallzuÈ chtung in Berlin,
Germany, for providing the crystal.
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